发布时间:2022-10-19 01:41作者:admin来源:北师大智慧学习研究院点击量:
以下文章来源于现代远程教育研究 ,作者周伟 杜静等
注释:
①“人在回路”是新一代人工智能基础理论体系中混合增强智能理论的重要组成部分,通过设计机器与人类高效协同工作的策略,提升机器的性能和人类的效率。
② 数据来源:北京师范大学互联网教育智能技术及应用国家工程研究中心与中文信息处理研究所研发的面向汉语二语教学的小学生字词测试系统(http://aied.bnu.edu.cn/xxszc)。
参考文献:
[1][瑞典]奥尔加·维伯格,[约旦]默罕默德·哈利勒,[荷兰]马丁尼·巴斯(2020).在线学习环境下的自我调节学习和学习分析实证研究述评[J].肖俊洪.中国远程教育,(12):28-41,58,93.
[2]包杰,卢涛(2012).基于Petri网的情境感知系统建模与仿真[J].计算机应用研究,29(2):621-625.
[3]蔡菁(2010).皮肤电反应信号在情感状态识别中的研究[D].重庆:西南大学.
[4]陈凯亮,包昊罡,李艳燕等(2020).协作情境下社会调节学习工具的设计与应用[J].现代教育技术,30(6):86-92.
[5]杜静,高博俊,周伟等(2020).国外适应性学习支持系统中情境感知模型对比研究[J].电化教育研究,41(8):58-66.
[6]顾明远(1998).教育大辞典[M].上海:上海教育出版社:1710.
[7]韩燕波,陈俊亮,王千祥(2011).《云计算和服务计算》专辑前言[J].计算机学报,34(12):2251-2252.
[8]胡博,王智学,董庆超等(2013).基于描述逻辑的上下文知识获取与推理方法[J].计算机科学,40(4):199-203.
[9]黄荣怀(2022).论科技与教育的系统性融合[J].中国远程教育,(7):4-12,28.
[10]黄荣怀,陈庚,张进宝等(2010).关于技术促进学习的五定律[J].开放教育研究,16(1): 11-19.
[11]黄荣怀,刘德建,刘晓琳等(2017).互联网促进教育变革的基本格局[J].中国电化教育,(1):7-16.
[12]黄荣怀,王欢欢,张慕华等(2020).面向智能时代的教育社会实验研究[J].电化教育研究,41(10):5-14.
[13]黄荣怀,杨俊锋,胡永斌(2012).从数字学习环境到智慧学习环境——学习环境的变革与趋势[J].开放教育研究,(1):75-84.
[14]黄荣怀,周伟,杜静等(2019).面向智能教育的三个基本计算问题[J].开放教育研究,25(5):11-22.
[15]康春花,辛涛(2010).测验理论的新发展:多维项目反应理论[J].心理科学进展,18(3):530-536.
[16]冷亚军,陆青,梁昌勇(2014).协同过滤推荐技术综述[J].模式识别与人工智能,27(8):720-734.
[17]李超,周泓(2018).基于复合神经网络的学习风格动态分析与研究[J].计算机工程与应用,54(6):150-155.
[18]李浩君,张广,王万良等(2017).基于多维特征差异的个性化学习资源推荐方法[J].系统工程理论与实践,37(11):2995-3005.
[19]李伟平,王武生,莫同等(2015).情境计算研究综述[J].计算机研究与发展,52(2):542-552.
[20]刘毓,赵云阁(2019).基于教学评价的中文短文本情感分析[J].现代电子技术,42(6):30-33.
[21]全国科学技术名词审定委员会(2013).教育学名词[EB/OL].[2022-05-01].https://www.termonline.cn/word/65499/1.
[22]施巍松,孙辉,曹杰等(2017).边缘计算:万物互联时代新型计算模型[J].计算机研究与发展,54(5):907-924.
[23]孙波,刘永娜,陈玖冰等(2015).智慧学习环境中基于面部表情的情感分析[J].现代远程教育研究,(2):96-103.
[24]孙其博,刘杰,黎羴等(2010).物联网:概念、架构与关键技术研究综述[J].北京邮电大学学报,33(3):1-9.
[25]王策三(1998).教学实验论[M].北京:人民教育出版社: 194.
[26]王飞跃,张俊(2017).智联网:概念、问题和平台[J].自动化学报,43(12):2061-2070.
[27]王飞跃,张军,张俊等(2018).工业智联网:基本概念、关键技术与核心应用[J].自动化学报,44(9):1606-1617.
[28]王雪(2015).多媒体学习研究中眼动跟踪实验法的应用[J].实验室研究与探索,34(3):190-193.
[29]王永固,邱飞岳,赵建龙等(2011).基于协同过滤技术的学习资源个性化推荐研究[J].远程教育杂志,29(3):66-71.
[30]杨超(2014).基于粒子群优化算法的学习资源推荐方法[J].计算机应用,34(5):1350-1353.
[31]余娜,辛涛(2007).规则空间模型的简介与述评[J].中国考试(研究版),(9):14-19.
[32]翟雪松,楚肖燕,张紫徽等(2021).基于中台架构的教育信息化数字治理研究[J].电化教育研究,42(6):40-46.
[33]张煜东,吴乐南,王水花(2010).专家系统发展综述[J].计算机工程与应用,46(19):43-47.
[34]庄榕霞,方海光,张颖等(2017).城市典型场域学习环境的发展特征分析[J].电化教育研究,38(2):82-90.
[35]邹萍,张华,马凯蒂等(2020).面向边缘计算的制造资源感知接入与智能网关技术研究[J].计算机集成制造系统,26(1):40-48.
[36]Ackerman, T. A., Gierl, M. J., & Walker, C. M. (2010). Using Multidimensional Item Response Theory to Evaluate Educational and Psychological Tests[J]. Educational Measurement Issues & Practice, 22(3):37-51.
[37]Almekhlafi, A. G. (2006). The Effect of Computer Assisted Language Learning (CALL) on United Arab Emirates English as a Foreign Language (EFL) School Students’ Achievement and Attitude[J]. Journal of Interactive Learning Research, 17(2):121-142.
[38]Baker, F. B. (2001). The Basics of Item Response Theory[M]. Portsmouth: Heinemann:1-3.
[39]Baker, R. S., Martin, T., & Rossi, L. M. (2016). Educational Data Mining and Learning Analytics[M]// Rupp, A. A., & Leighton J. P. The Wiley Handbook of Cognition and Assessment: Frameworks, Methodologies, and Applications. New Jersey: Wiley:379-396.
[40]Baltrušaitis, T., Robinson, P., & Morency, L. P. (2016). Openface: An Open Source Facial Behavior Analysis Toolkit[C]//Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE:1-10.
[41]Bohus, D., Andrist, S., & Feniello, A. et al. (2021). Platform for Situated Intelligence[EB/OL]. [2022-05-08]. https://arxiv.org/pdf/2103.15975.pdf.
[42]Cha, H. J., Kim, Y. S., & Park, S. H. et al. (2006). Learning Styles Diagnosis Based on User Interface Behaviors for the Customization of Learning Interfaces in an Intelligent Tutoring System[C]// Proceedings of the International Conference on Intelligent Tutoring Systems. Springer, Berlin, Heidelberg:513-524.
[43]Corbett, A. T., & Anderson, J. R. (1994). Knowledge Tracing: Modeling the Acquisition of Procedural Knowledge[J]. User Modeling and User-Adapted Interaction, 4(4):253-278.
[44]De-Marcos, L., Pagés, C., & Martinez, J. J. et al. (2007). Competency-Based Learning Object Sequencing Using Particle Swarms[C]// Proceedings of the 19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2007) (Vol. 2). IEEE:111-116.
[45]Felder, R. M., & Spurlin, J. (2005). Applications, Reliability and Validity of the Index of Learning Styles[J]. International Journal of Engineering Education, 21(1):103-112.
[46]Garcia, P., Amandi, A., & Schiaffino, S. et al. (2007). Evaluating Bayesian Networks’ Precision for Detecting Students’ Learning Styles[J]. Computers & Education, 49(3):794-808.
[47]Gu, P., & Lee, Y. (2019). Promoting Students’Motivation and Use of SRL Strategies in the Web-Based Mathematics Learning Environment[J]. Journal of Educational Technology Systems, 47(3):391-410.
[48]Huang, M., Huang, H., & Chen, M. (2007). Constructing a Personalized E-Learning System Based on Genetic Algorithm and Case-Based Reasoning Approach[J]. Expert Systems with Applications, 33(3):551-564.
[49]Iglesias, A., Martínez, P., & Aler, R. et al. (2009). Learning Teaching Strategies in an Adaptive and Intelligent Educational System Through Reinforcement Learning[J]. Applied Intelligence, 31(1):89-106.
[50]Ketamo, H. (2003). xTask-An Adaptable Learning Environment[J]. Journal of Computer Assisted Learning, 19(3):360-370.
[51]Kobsa, A. (2005). User Modeling and User-Adapted Interaction[J]. User Modeling and User-Adapted Interaction, 15(1):185-190.
[52]Kumar, B. A., & Sharma, B. (2020). Context Aware Mobile Learning Application Development: A Systematic Literature Review[J]. Education and Information Technologies, 25(3): 2221-2239.
[53]Lang, C., Siemens, G., & Wise, A. et al. (2017). Handbook of Learning Analytics[M]. New York: SOLAR, Society for Learning Analytics and Research:61-160.
[54]Lemire, D., Boley, H., & McGrath, S. et al. (2005). Collaborative Filtering and Inference Rules for Context-Aware Learning Object Recommendation[J]. Interactive Technology and Smart Education, 2(3):179-188.
[55]Li, W., Chu, W., & Tung, F. et al. (2010). A Uniform Device Information Access for Context-Aware Middleware[C]// Proceedings of the 2010 IEEE International Conference on Web Services (ICWS). IEEE:654-657.
[56]Liu, Y., Liu, Q., & Wu, R. et al. (2016). Collaborative Learning Team Formation: A Cognitive Modeling Perspective[C]// Proceedings of the International Conference on Database Systems for Advanced Applications. Springer, Cham:383-400.
[57]Milrad, M., Perez, J., & Hoppe, U. (2002). C-Notes: Designing a Mobile and Wireless Application to Support Collaborative Knowledge Building[C]// Proceedings of the IEEE International Workshop on Wireless and Mobile Technologies in Education. IEEE:117-120.
[58]Monarch, R. M. (2021). Human-in-the-Loop Machine Learning: Active Learning and Annotation For Human-Centered AI[M]. New York: Simon and Schuster:1-20.
[59]Poria, S., Cambria, E., & Hussain, A. et al. (2015). Towards an Intelligent Framework for Multimodal Affective Data Analysis[J]. Neural Netw, 63:104-116.
[60]Romero, C., Ventura, S., & García, E. (2008). Data Mining in Course Management Systems: Moodle Case Study and Tutorial[J]. Computers & Education, 51(1):368-384.
[61]Sarwar, S., Qayyum, Z. U., & García-Castro, R. et al. (2019). Ontology Based E-Learning Framework: A Personalized, Adaptive and Context Aware Model[J]. Multimedia Tools and Applications, 78(24):34745-34771.
[62]Schilit, B., Adams, N., & Want, R. (1994). Context-Aware Computing Applications[C]// Proceedings of the 1994 First Workshop On Mobile Computing Systems and Applications. IEEE:85-90.
[63]Sottilare, R. A., Brawner, K. W., & Goldberg, B. S. et al. (2012). The Generalized Intelligent Framework for Tutoring (GIFT)[EB/OL]. [2022-05-01]. https://www.researchgate.net/profile/Robert-Sottilare/publication/6_The_Generalized_Intelligent_Framework_for_Tutoring_GIFT/links/5442b1ee0cf2a6a049a89e85/The-Generalized-Intelligent-Framework-for-Tutoring-GIFT.pdf.
[64]Soute, I., Markopoulos, P., & Magielse, R. (2010). Head Up Games: Combining the Best of Both Worlds by Merging Traditional and Digital Play[J]. Personal & Ubiquitous Computing, 14(5):435-444.
[65]Wang, T., Wang, K., & Huang, Y. (2008). Using a Style-Based Ant Colony System for Adaptive Learning[J]. Expert Systems with Applications, 34(4):2449-2464.
[66]Xu, C., & Cheung, S. (2005). Inconsistency Detection and Resolution for Context-Aware Middleware Support[J]. ACM SIGSOFT Software Engineering Notes, 30(5):336-345.
[67]Yatani, K., Onuma, M., & Sugimoto, M. et al. (2010). Musex: A System for Supporting Children’s Collaborative Learning in a Museum with PDAs[J]. Systems & Computers in Japan, 35(14):54-63.
[68]Zhou, W., Hu, R., & Sun, F. et al. (2019). An Intelligent Testing Strategy for Vocabulary Assessment of Chinese Second Language Learners[C]// Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications. Florence: Association for Computational Linguistics:21-29.