## **Smart Computing and Intelligence**

## **Series Editors**

Kinshuk, Athabasca, AB, Canada

Ronghuai Huang, Beijing Normal University, Beijing, China

Demetrios Sampson, Department of Digital Systems, University of Piraeus, Piraeus, Greece

This book series aims to establish itself as a medium for the publication of new research and development of innovative paradigms, models, architectures, conceptual underpinnings and practical implementations encompassed within smart computing and intelligence.

The scope of the series includes but is not limited to smart city, smart education, health informatics, smart ecology, data and computational analytics, smart society, smart learning, complex systems-chaos, computational thinking, brain computer interaction, natural/computer interaction, humanoid behaviour, and impact of educational psychology on computing.

The cornerstone of this series' editorial policy is its unwavering commitment to report the latest results from all areas of smart computing and intelligence research, development, and practice. Our mission is to serve the global smart computing and intelligence community by providing a most valuable publication service.

Dejian Liu · Ronghuai Huang · Ying Chen · Michael Agyemang Adarkwah · Xiangling Zhang · Xin Li · Junjie Zhang · Ting Da

## Using Educational Robots to Enhance Learning

An Analysis of 100 Academic Articles



Dejian Liu Smart Learning Institute Beijing Normal University Beijing, China

Ying Chen Beijing Normal University Beijing, China

Xiangling Zhang Beijing Institute of Education Beijing, China

Junjie Zhang People's Public Security University of China Beijing, China Ronghuai Huang Smart Learning Institute Beijing Normal University Beijing. China

Michael Agyemang Adarkwah Beijing Normal University Beijing, China

Xin Li Jiangsu Normal University Xuzhou, China

Ting Da Beijing Normal University Beijing, China

ISSN 2522-0888 ISSN 2522-0896 (electronic) Smart Computing and Intelligence ISBN 978-981-97-5825-8 ISBN 978-981-97-5826-5 (eBook) https://doi.org/10.1007/978-981-97-5826-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

If disposing of this product, please recycle the paper.

## **Contents**

| 1 | Preface: Embracing a New Era: Facilitating Teaching                |                                                          |    |  |  |
|---|--------------------------------------------------------------------|----------------------------------------------------------|----|--|--|
|   | and                                                                | Learning Through Robotics                                | 1  |  |  |
|   | 1.1                                                                | Artificial Intelligence and Robotics in Education        | 1  |  |  |
|   | 1.2                                                                | Guiding Policies for Promoting Educational Robots        | 2  |  |  |
|   | 1.3                                                                | Key Technologies for Educational Robots                  | 2  |  |  |
|   | 1.4                                                                | Learning with Educational Robots                         | 4  |  |  |
|   | 1.5                                                                | Purpose of This Book                                     | 6  |  |  |
| 2 | Reading Guidelines of This Handbook                                |                                                          |    |  |  |
|   | 2.1                                                                | Defining Educational Robots                              | 9  |  |  |
|   | 2.2                                                                | The Selection of Papers and User Guidance                | 9  |  |  |
|   | 2.3                                                                | Thematic Topics of Educational Robot                     | 11 |  |  |
| 3 | <b>Background Material Necessary for the Effective Use of This</b> |                                                          |    |  |  |
|   | Bool                                                               | k                                                        | 15 |  |  |
|   | 3.1                                                                | Terms and Theories                                       | 15 |  |  |
|   | 3.2                                                                | Research Organizations Briefing                          | 23 |  |  |
|   | 3.3                                                                | Influential Journals                                     | 34 |  |  |
|   | 3.4                                                                | Robot Taxonomy                                           | 41 |  |  |
| 4 | Personalized Tutoring Through Conversational Agents 5              |                                                          |    |  |  |
|   | 4.1                                                                | What If the Devil is My Guardian Angel: ChatGPT          |    |  |  |
|   |                                                                    | as a Case Study of Using Chatbots in Education           | 67 |  |  |
|   | 4.2                                                                | Engineering Education in the Era of ChatGPT: Promise     |    |  |  |
|   |                                                                    | and Pitfalls of Generative AI for Education              | 79 |  |  |
|   | 4.3                                                                | Preparing Educators and Students for ChatGPT and AI      |    |  |  |
|   |                                                                    | Technology in Higher Education: Benefits, Limitations,   |    |  |  |
|   |                                                                    | Strategies and Implications of ChatGPT & AI Technologies | 82 |  |  |

vi Contents

| 5 | Robotics in STEM Education           |                                                            | 87  |
|---|--------------------------------------|------------------------------------------------------------|-----|
|   | 5.1                                  | Robotics and STEM Learning: Students' Achievements         |     |
|   |                                      | in Assignments According to the P3 Task                    |     |
|   |                                      | Taxonomy—Practice, Problem-Solving, and Projects           | 90  |
|   | 5.2                                  | Using Mastery Learning Theory to Develop Task-Centered     |     |
|   |                                      | Hands-On STEM Learning of Arduino-Based Educational        |     |
|   |                                      | Robotics: Psychomotor Performance and Perception           |     |
|   |                                      | by a Convergent Parallel Mixed Method                      | 94  |
|   | 5.3                                  | Collaborative Robotics, More Than Just Working in Groups   | 98  |
| 6 | Robot-Based Practices in Programming |                                                            |     |
|   | 6.1                                  | Active Learning Environments with Robotic Tangibles:       |     |
|   |                                      | Children's Physical and Virtual Spatial Programming        |     |
|   |                                      | Experiences                                                | 107 |
|   | 6.2                                  | A Tool for Introducing Computer Science with Automatic     |     |
|   |                                      | Formative Assessment                                       | 110 |
|   | 6.3                                  | High School Students' Views on the PBL Activities          |     |
|   |                                      | Supported via Flipped Classroom and LEGO Practices         | 113 |
|   | 6.4                                  | The Effects of Different Programming Trainings             |     |
|   |                                      | on the Computational Thinking Skills                       | 118 |
|   | 6.5                                  | Other Papers                                               | 121 |
| 7 | Lanc                                 | guage Learning with Social Robots                          | 123 |
| ′ | 7.1                                  | Teaching and Learning with Children: Impact of Reciprocal  | 123 |
|   | 7.1                                  | Peer Learning with a Social Robot on Children's Learning   |     |
|   |                                      | and Emotive Engagement                                     | 125 |
|   | 7.2                                  | Intelligent Personal Assistants: Can They Understand       | 123 |
|   | 1.2                                  | and Be Understood by Accented L2 Learners?                 | 129 |
|   | _                                    | •                                                          |     |
| 8 |                                      | hing with Robotics in Classroom                            | 135 |
|   | 8.1                                  | The Effect of Programming on Primary School Students'      |     |
|   |                                      | Mathematical and Scientific Understanding: Educational     |     |
|   |                                      | Use of mBot                                                | 137 |
|   | 8.2                                  | Exploring the Evolution of Two Girls' Conceptions          |     |
|   |                                      | and Practices in Computational Thinking in Science         | 142 |
|   | 8.3                                  | A Systematic Review of the Literature Regarding Socially   |     |
|   |                                      | Assistive Robots in Pre-tertiary Education                 | 146 |
|   | 8.4                                  | Analyzing the Effect of the Use of 3D Simulations          |     |
|   |                                      | on the Performance of Engineering Students in a Robotics   |     |
|   |                                      | Course: Findings from a Pilot Study                        | 150 |
| 9 | Robe                                 | ot-Assisted Special Education                              | 155 |
|   | 9.1                                  | Review of Assistive Technology in the Training of Children |     |
|   |                                      | with Autism Spectrum Disorders                             | 158 |
|   | 9.2                                  | Other Articles for Robot-Assisted Special Education        | 163 |

Contents vii

| 10  | Robo         | tics-Based Cognitive Training for the Senior People           | 167 |
|-----|--------------|---------------------------------------------------------------|-----|
|     | 10.1         | The Humanoid Robot Sil-bot in a Cognitive Training            |     |
|     |              | Program for Community-Dwelling Elderly People                 |     |
|     |              | with Mild Cognitive Impairment During the COVID-19            |     |
|     |              | Pandemic: A Randomized Controlled Trial                       | 169 |
|     | 10.2         | The Humanoid Robot NAO as Trainer in a Memory                 |     |
|     |              | Program for Elderly People with Mild Cognitive                |     |
|     |              | Impairment                                                    | 173 |
|     | 10.3         | Mini: A New Social Robot for the Elderly                      | 176 |
| 11  | Requ         | irement Analysis from Key Stakeholders                        | 181 |
|     | $11.\bar{1}$ | Research Method                                               | 181 |
|     | 11.2         | Questionnaire Survey from Different Groups                    | 182 |
|     | 11.3         | Needs from Different User Groups and Implications             | 217 |
| Hig | hlight       | s and Recommendations                                         | 223 |
| Pos | tscript      | t                                                             | 227 |
| Apı | oendix       | 1: List of 100 Influential Academic Articles                  |     |
|     |              | of Educational Robots (in Alphabetical Order)                 | 229 |
| App | oendix       | 2: Top Organizations, Publications Sorted by Citation in WoS  | 245 |
| Apj | oendix       | 3: Typical Open-Source AI Platforms and Large Language Models | 247 |
|     |              |                                                               |     |
| App | pendix       | 4: A Brief of Educational Robot Industry                      | 251 |
| Ref | erence       | s                                                             | 269 |